Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number
In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by
where n is a nonnegative integer and the sum is taken over all combinations of nonnegative indices i, j, and k such that i + j + k = n.[1] The trinomial coefficients are given by
The trinomial expansion can be calculated by applying the binomial expansion twice, setting , which leads to
Above, the resulting in the second line is evaluated by the second application of the binomial expansion, introducing another summation over the index .
The product of the two binomial coefficients is simplified by shortening ,
and comparing the index combinations here with the ones in the exponents, they can be relabelled to , which provides the expression given in the first paragraph.