Regular hyperbolic tiling table | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical (improper/Platonic)/Euclidean/hyperbolic (Poincaré disk: compact/paracompact/noncompact) tessellations with their Schläfli symbol | |||||||||||
p \ q | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... | ∞ | ... | iπ/λ |
2 | ![]() {2,2} ![]() ![]() ![]() ![]() ![]() |
![]() {2,3} ![]() ![]() ![]() ![]() ![]() |
![]() {2,4} ![]() ![]() ![]() ![]() ![]() |
![]() {2,5} ![]() ![]() ![]() ![]() ![]() |
![]() {2,6} ![]() ![]() ![]() ![]() ![]() |
![]() {2,7} ![]() ![]() ![]() ![]() ![]() |
![]() {2,8} ![]() ![]() ![]() ![]() ![]() |
![]() {2,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {2,iπ/λ} ![]() ![]() ![]() ![]() ![]() | ||
3 | ![]() {3,2} ![]() ![]() ![]() ![]() ![]() |
![]() (tetrahedron) {3,3} ![]() ![]() ![]() ![]() ![]() |
![]() (octahedron) {3,4} ![]() ![]() ![]() ![]() ![]() |
![]() (icosahedron) {3,5} ![]() ![]() ![]() ![]() ![]() |
![]() (deltille) {3,6} ![]() ![]() ![]() ![]() ![]() |
![]() {3,7} ![]() ![]() ![]() ![]() ![]() |
![]() {3,8} ![]() ![]() ![]() ![]() ![]() |
![]() {3,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {3,iπ/λ} ![]() ![]() ![]() ![]() ![]() | ||
4 | ![]() {4,2} ![]() ![]() ![]() ![]() ![]() |
![]() (cube) {4,3} ![]() ![]() ![]() ![]() ![]() |
![]() (quadrille) {4,4} ![]() ![]() ![]() ![]() ![]() |
![]() {4,5} ![]() ![]() ![]() ![]() ![]() |
![]() {4,6} ![]() ![]() ![]() ![]() ![]() |
![]() {4,7} ![]() ![]() ![]() ![]() ![]() |
![]() {4,8} ![]() ![]() ![]() ![]() ![]() |
![]() {4,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {4,iπ/λ} ![]() ![]() ![]() ![]() ![]() | ||
5 | ![]() {5,2} ![]() ![]() ![]() ![]() ![]() |
![]() (dodecahedron) {5,3} ![]() ![]() ![]() ![]() ![]() |
![]() {5,4} ![]() ![]() ![]() ![]() ![]() |
![]() {5,5} ![]() ![]() ![]() ![]() ![]() |
![]() {5,6} ![]() ![]() ![]() ![]() ![]() |
![]() {5,7} ![]() ![]() ![]() ![]() ![]() |
![]() {5,8} ![]() ![]() ![]() ![]() ![]() |
![]() {5,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {5,iπ/λ} ![]() ![]() ![]() ![]() ![]() | ||
6 | ![]() {6,2} ![]() ![]() ![]() ![]() ![]() |
![]() (hextille) {6,3} ![]() ![]() ![]() ![]() ![]() |
![]() {6,4} ![]() ![]() ![]() ![]() ![]() |
![]() {6,5} ![]() ![]() ![]() ![]() ![]() |
![]() {6,6} ![]() ![]() ![]() ![]() ![]() |
![]() {6,7} ![]() ![]() ![]() ![]() ![]() |
![]() {6,8} ![]() ![]() ![]() ![]() ![]() |
![]() {6,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {6,iπ/λ} ![]() ![]() ![]() ![]() ![]() | ||
7 | {7,2}![]() ![]() ![]() ![]() ![]() |
![]() {7,3} ![]() ![]() ![]() ![]() ![]() |
![]() {7,4} ![]() ![]() ![]() ![]() ![]() |
![]() {7,5} ![]() ![]() ![]() ![]() ![]() |
![]() {7,6} ![]() ![]() ![]() ![]() ![]() |
![]() {7,7} ![]() ![]() ![]() ![]() ![]() |
![]() {7,8} ![]() ![]() ![]() ![]() ![]() |
![]() {7,∞} ![]() ![]() ![]() ![]() ![]() |
{7,iπ/λ}![]() ![]() ![]() ![]() ![]() | ||
8 | {8,2}![]() ![]() ![]() ![]() ![]() |
![]() {8,3} ![]() ![]() ![]() ![]() ![]() |
![]() {8,4} ![]() ![]() ![]() ![]() ![]() |
![]() {8,5} ![]() ![]() ![]() ![]() ![]() |
![]() {8,6} ![]() ![]() ![]() ![]() ![]() |
![]() {8,7} ![]() ![]() ![]() ![]() ![]() |
![]() {8,8} ![]() ![]() ![]() ![]() ![]() |
![]() {8,∞} ![]() ![]() ![]() ![]() ![]() |
{8,iπ/λ}![]() ![]() ![]() ![]() ![]() | ||
... | |||||||||||
∞ | ![]() {∞,2} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,3} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,4} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,5} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,6} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,7} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,8} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,iπ/λ} ![]() ![]() ![]() ![]() ![]() | ||
... | |||||||||||
iπ/λ | ![]() {iπ/λ,2} ![]() ![]() ![]() ![]() ![]() |
![]() {iπ/λ,3} ![]() ![]() ![]() ![]() ![]() |
![]() {iπ/λ,4} ![]() ![]() ![]() ![]() ![]() |
![]() {iπ/λ,5} ![]() ![]() ![]() ![]() ![]() |
![]() {iπ/λ,6} ![]() ![]() ![]() ![]() ![]() |
{iπ/λ,7}![]() ![]() ![]() ![]() ![]() |
{iπ/λ,8}![]() ![]() ![]() ![]() ![]() |
![]() {iπ/λ,∞} ![]() ![]() ![]() ![]() ![]() |
![]() {iπ/λ, iπ/λ} |
Tables: