![]() | This redirect does not require a rating on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | ||||||||||
|
Can you quantify or make mathematically precise what you mean by a "large gap"? Phys 15:48, 2 Dec 2003 (UTC)
I believe there are a number of mathematical analysis ways. If Taylor's theorem is breaking down as an infinite series expansion, something in the remainder term is blowing up. Smooth says the Fourier transfrom drops off at infinity faster than any polynomial - one can ask for more than that. I'm pretty sure there are classes of functions between smooth and analytic that have been studied, as whole scales (are they called quasi-analytic?). Obviously it's very striking how different the zero sets are, since any closed set can be the zero set of a smooth function.
Charles Matthews 17:14, 2 Dec 2003 (UTC)
Seems protecting the semi-open intervals from interference from Wiki-syntax busibodies also damages the format.
Charles Matthews 10:09, 13 Nov 2004 (UTC)
Any objections to moving this to differentiable function? That is currently a redirect to derivative. --MarSch 30 June 2005 16:07 (UTC)
Differentiabillity class could also be merged there. In the intro here C^1 and all that is explained so I think it would be a natural move. --MarSch 1 July 2005 10:12 (UTC)
Currently, "Differentiability Classes" redirects here to Smooth Function, but it should be the other way around. Smooth functions are a special case of differentiability class. It doesn't make sense to redirect the generalization to the most extreme example. — Preceding unsigned comment added by 138.210.251.10 (talk) 06:29, 21 February 2014 (UTC)
It is unfortunately a classical mistake. "f(x)" is no function, the function that would correspond is called "f". Or x|->f(x). I can't give further information because my English isn't good enough to describe mathematical objects. Bête spatio-temporelle [my name]
I don't think Cω is actually defined anywhere in this article, which is a little ridiculous considering how often it is mentioned. As far as I can tell, Ck is only explicitly defined in the article for non-negative integers. Eebster the Great (talk) 21:43, 14 March 2009 (UTC)
"The function f is said to be of class Cω, or analytic, if f is smooth and if it equals its Taylor series expansion around any point in its domain." Is it redundant to say f is smooth? Are there functions which equal their Taylor expansions but aren't smooth? If so, perhaps one should be provided. Erasmuse (talk) 03:37, 16 June 2014 (UTC)
I was looking at the article to see if functions form a vector space. And, this article told me they form a Frechet space, which means nothing to me. Of course, I can click the link and find out that it is a topological vector space. Wouldn't it make sense to specifically say the space is a vector space? StatisticsMan (talk) 04:32, 3 February 2010 (UTC)
Let g be some function then if a function f is of class Cr and g composed f is of class Cr then g is also of class Cr. Is this true and if this is true should not a theorem be in the article stating this and for which a proof should be provided. —Preceding unsigned comment added by 128.100.86.53 (talk) 18:08, 12 February 2010 (UTC)
This may be an easy question to answer (or maybe not), but why all the interest in the class of C^k functions? Why not just k-times-differentiable functions? I understand that there are functions, such as x^2*sin(1/x), which are differentiable but not C^1, but... so what? What parts of the theory become cleaner by excluding such examples? (I guess theorems like Clairaut's theorem would be one example.) Anyhow, I think the article should definitely say why it became the standard thing to insist that a function is not just differentiable k times, but continuously so. Kier07 (talk) 02:00, 5 March 2010 (UTC)
Shouldn't be the paragraph be like this:
Let n and m be some positive integers. If f is a function from an open subset of Rn with values in Rm, then f has component functions f1, ..., fm. Each of these may or may not have partial derivatives. We say that f is of class Ck if all of the partial derivatives exist and are continuous, where is an integer between 1 and m, each of is an integer between 0 and k and .