![]() | This ![]() It is of interest to the following WikiProjects: | ||||||||||
|
This page has archives. Sections older than 365 days may be automatically archived by Lowercase sigmabot III when more than 10 sections are present. |
The textbook "Calculus- a complete course" by Robert A. Adams says that sgn(x) is equal to 1 if x > 0; equal to -1 if x < 0 and that it is undefined when x is equal to 0; that is to say that:
The explanation is verbatim "The value of the sgn(x) tells whether x is positive or negative. Since 0 is neither positive nor negative, sgn(0) is not defined." This makes sense seeing as how the sign function is x/(abs(x)), and when x = 0 one would get 0/0. This directly contradicts this article, which both has a dot at (0,0) and states that:
Someone mentioned above that since the signum function is a generalized function, sgn(0)=0 can apply but that doesn't mean that it is true. If somebody knows anything about this, I'd like this to be disambiguated and (if wrong) fixed. A small explanation about 'why' it isn't undefined would also be nice if somebody understands that. --BiT (talk) 14:25, 10 November 2008 (UTC)
Leaving it undefined at 0 makes the derivative make more sense (as it too would be undefined at x=0). —Preceding unsigned comment added by 142.162.24.209 (talk) 04:59, 5 February 2009 (UTC)
Leaving it undefined at 0 makes no difference for the derivative since limits are defined to require an approach from both sides. Defining the sgn to be 0 at 0 allows for a more fluid definition of the matrix determinant in terms of the Leibniz formula. Doing so allows the sum to be taken over all arrangements up to N, and not just all permutations. It makes more sense from a combinatorial point of view. Antares5245 (talk) 00:20, 14 December 2009 (UTC)
As far as I can tell, the entire point of the section on algebraic representation is "couldn't we express the signum function without using a conditional?" In other words, the basic definition of signum has a three-way switch using the condition brace; can we do it using normal (non-conditional) mathematics?
It seems like it could be simplified as or , but I suppose that would be undefined when x is 0. (This would lend credence to the above suggestion that signum be undefined when x is 0.)
Failing that, I don't really see the point of this section. It doesn't cite any sources to show where this complicated formula came from. The fact that it requires n be a certain number of decimal digits is mathematically messy and requires more special cases than the simple definition of signum in the first place. What is the point / use of this formula? —MattGiuca (talk) 07:17, 25 August 2011 (UTC)
Really? Is a citation really needed for the derivative? Surely this is a basic calculation. It follows trivially from the line below it about the Heaviside step function(which doesn't say citation needed).--217.84.27.165 (talk) 11:21, 13 November 2011 (UTC)
Isn't "signum function" the original and still most common name for this function? I think the lead section of the article should be changed to something like: "In mathematics, the signum function (from signum, Latin for "sign") is an odd mathematical function that extracts the sign of a real number. This function is also sometimes called the sign function, although this may lead to confusion with the sine function. In mathematical expressions, the signum function is often represented as sgn."
Also, I think the article title should be "Signum function", not "Sign function". Isheden (talk) 16:59, 7 March 2012 (UTC)
I introduced a minus sign in the Fourier transform of the function. The former redaction was
I have crossed several sources showing this is incorrect and that k should be changed to -k either on the left hand side or on the right hand side. For instance Wolfram[1] tells us the Laplace transform is , so replacing s by -ik and doubling the value to extend the integral to gives the correct result. I also checked from a French course giving a complete derivation for the Fourier transform of the Heaviside distribution and chose to change the convention for the Fourier transform on the left hand side. I do not have access to the article given as a reference. If indeed the former result was correct, please revert. Mathieu Perrin (talk) 13:19, 3 March 2020 (UTC)
Faster than Thunder (talk) 05:33, 10 January 2022 (UTC)
I've tried to group the various properties into smaller sections, which I hope may make sense to different kinds of reader. Eg: many aspects of the signum function are likely to be accessible to a wider readership than the vagaries of calculus might be (let alone distributions and Fourier transforms). NeilOnWiki (talk) 16:29, 10 May 2024 (UTC)
Just for information: I'm in the process of editing the newly created sub-section that has the title "Differentiation" (which I may rename). The first paragraph refers to the weak derivative of the absolute value function, then goes on to say "the resultant power of x is 0". As far as I can tell, this is a non-sequitur, which was added at this edit date before the weak derivative text was inserted. NeilOnWiki (talk) 11:13, 12 May 2024 (UTC)