in SQP, each subproblem is a quadratic program, with a quadratic model of the objective subject to a linearization of the constraints
in SLQP, two subproblems are solved at each step: a linear program (LP) used to determine an active set, followed by an equality-constrained quadratic program (EQP) used to compute the total step
This decomposition makes SLQP suitable to large-scale optimization problems, for which efficient LP and EQP solvers are available, these problems being easier to scale than full-fledged quadratic programs.
In the LP phase of SLQP, the following linear program is solved:
Let denote the active set at the optimum of this problem, that is to say, the set of constraints that are equal to zero at . Denote by and the sub-vectors of and corresponding to elements of .