Generalization of analytic functions
In mathematics, pseudoanalytic functions are functions introduced by Lipman Bers (1950 , 1951 , 1953 , 1956 ) that generalize analytic functions and satisfy a weakened form of the Cauchy–Riemann equations .
Let
z
=
x
+
i
y
{\displaystyle z=x+iy}
and let
σ
(
x
,
y
)
=
σ
(
z
)
{\displaystyle \sigma (x,y)=\sigma (z)}
be a real-valued function defined in a bounded domain
D
{\displaystyle D}
. If
σ
>
0
{\displaystyle \sigma >0}
and
σ
x
{\displaystyle \sigma _{x}}
and
σ
y
{\displaystyle \sigma _{y}}
are Hölder continuous , then
σ
{\displaystyle \sigma }
is admissible in
D
{\displaystyle D}
. Further, given a Riemann surface
F
{\displaystyle F}
, if
σ
{\displaystyle \sigma }
is admissible for some neighborhood at each point of
F
{\displaystyle F}
,
σ
{\displaystyle \sigma }
is admissible on
F
{\displaystyle F}
.
The complex-valued function
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
{\displaystyle f(z)=u(x,y)+iv(x,y)}
is pseudoanalytic with respect to an admissible
σ
{\displaystyle \sigma }
at the point
z
0
{\displaystyle z_{0}}
if all partial derivatives of
u
{\displaystyle u}
and
v
{\displaystyle v}
exist and satisfy the following conditions:
u
x
=
σ
(
x
,
y
)
v
y
,
u
y
=
−
σ
(
x
,
y
)
v
x
{\displaystyle u_{x}=\sigma (x,y)v_{y},\quad u_{y}=-\sigma (x,y)v_{x}}
If
f
{\displaystyle f}
is pseudoanalytic at every point in some domain, then it is pseudoanalytic in that domain.[ 1]
Similarities to analytic functions [ edit ]
If
f
(
z
)
{\displaystyle f(z)}
is not the constant
0
{\displaystyle 0}
, then the zeroes of
f
{\displaystyle f}
are all isolated.
Therefore, any analytic continuation of
f
{\displaystyle f}
is unique.[ 2]
Complex constants are pseudoanalytic.
Any linear combination with real coefficients of pseudoanalytic functions is pseudoanalytic.[ 1]
^ a b Bers, Lipman (1950), "Partial differential equations and generalized analytic functions" (PDF) , Proceedings of the National Academy of Sciences of the United States of America , 36 (2): 130– 136, Bibcode :1950PNAS...36..130B , doi :10.1073/pnas.36.2.130 , ISSN 0027-8424 , JSTOR 88348 , MR 0036852 , PMC 1063147 , PMID 16588958
^ Bers, Lipman (1956), "An outline of the theory of pseudoanalytic functions" (PDF) , Bulletin of the American Mathematical Society , 62 (4): 291– 331, doi :10.1090/s0002-9904-1956-10037-2 , ISSN 0002-9904 , MR 0081936
Kravchenko, Vladislav V. (2009). Applied pseudoanalytic function theory . Birkhauser. ISBN 978-3-0346-0004-0 .
Bers, Lipman (1951), "Partial differential equations and generalized analytic functions. Second Note" (PDF) , Proceedings of the National Academy of Sciences of the United States of America , 37 (1): 42– 47, Bibcode :1951PNAS...37...42B , doi :10.1073/pnas.37.1.42 , ISSN 0027-8424 , JSTOR 88213 , MR 0044006 , PMC 1063297 , PMID 16588987
Bers, Lipman (1953), Theory of pseudo-analytic functions , Institute for Mathematics and Mechanics, New York University, New York, MR 0057347