This is a list of articles that are considered real analysis topics.
See also: glossary of real and complex analysis.
- Limit of a sequence
- Limit of a function (see List of limits for a list of limits of common functions)
- One-sided limit – either of the two limits of functions of real variables x, as x approaches a point from above or below
- Squeeze theorem – confirms the limit of a function via comparison with two other functions
- Big O notation – used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions
(see also list of mathematical series)
More advanced topics
[edit]
- Convolution
- Farey sequence – the sequence of completely reduced fractions between 0 and 1
- Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.
- Indeterminate forms – algebraic expressions gained in the context of limits. The indeterminate forms include 00, 0/0, 1∞, ∞ − ∞, ∞/∞, 0 × ∞, and ∞0.
Differentiation in geometry and topology
[edit]
see also List of differential geometry topics
(see also Lists of integrals)
Integration and measure theory
[edit]
see also List of integration and measure theory topics
Fundamental theorems
[edit]
- Monotone convergence theorem – relates monotonicity with convergence
- Intermediate value theorem – states that for each value between the least upper bound and greatest lower bound of the image of a continuous function there is at least one point in its domain that the function maps to that value
- Rolle's theorem – essentially states that a differentiable function which attains equal values at two distinct points must have a point somewhere between them where the first derivative is zero
- Mean value theorem – that given an arc of a differentiable curve, there is at least one point on that arc at which the derivative of the curve is equal to the "average" derivative of the arc
- Taylor's theorem – gives an approximation of a
times differentiable function around a given point by a
-th order Taylor-polynomial.
- L'Hôpital's rule – uses derivatives to help evaluate limits involving indeterminate forms
- Abel's theorem – relates the limit of a power series to the sum of its coefficients
- Lagrange inversion theorem – gives the Taylor series of the inverse of an analytic function
- Darboux's theorem – states that all functions that result from the differentiation of other functions have the intermediate value property: the image of an interval is also an interval
- Heine–Borel theorem – sometimes used as the defining property of compactness
- Bolzano–Weierstrass theorem – states that each bounded sequence in
has a convergent subsequence
- Extreme value theorem - states that if a function
is continuous in the closed and bounded interval
, then it must attain a maximum and a minimum
Foundational topics
[edit]
See list of inequalities