mic_none

Out-of-the-loop performance problem Source: en.wikipedia.org/wiki/Out-of-the-loop_performance_problem

The out-of-the-loop performance problem (OOL or OOTL[1]) arises when an operator suffers from performance decrement as a consequence of automation.[2][3] The potential loss of skills and of situation awareness caused by vigilance and complacency problems might make operators of automated systems unable to operate manually in case of system failure.[4] Highly automated systems reduce the operator to monitoring role, which diminishes the chances for the operator to understand the system.[5] It is related to mind wandering.[5]

Etymology

[edit]

OOL is also known as out-of-the-loop syndrome[6] and out-of-the-loop effect.[7] One of the first mentions of the term "out of the loop" is found in a patent by Willard Meilander from Goodyear Aerospace Corporation for automated aircraft control in 1972.[8][9] More early mentions of OOL came up in the context of flight automation in 1980s.[10]

Consequences

[edit]

Three Mile Island accident in 1979, USAir Flight 5050 crash in 1989, Air France Flight 447 in 2009 and the loss of $400 million by Knight Capital Group in 2012 are attributed to OOL.[3][11]

Automatic train operation

[edit]

Automatic train operation is meant to reduce manual operation. This results in OOL performance problem for train drivers.[12]

See also

[edit]

References

[edit]
  1. ^ Merat, Natasha; Seppelt, Bobbie; Louw, Tyron; Engström, Johan; Lee, John D.; Johansson, Emma; Green, Charles A.; Katazaki, Satoshi; Monk, Chris; Itoh, Makoto; McGehee, Daniel; Sunda, Takashi; Unoura, Kiyozumi; Victor, Trent; Schieben, Anna; Keinath, Andreas (1 February 2019). "The "Out-of-the-Loop" concept in automated driving: proposed definition, measures and implications". Cognition, Technology & Work. 21 (1): 87–98. doi:10.1007/s10111-018-0525-8. hdl:10919/93316. ISSN 1435-5566. S2CID 52279007.
  2. ^ Endsley, Mica R.; Kiris, Esin O. (June 1995). "The Out-of-the-Loop Performance Problem and Level of Control in Automation". Human Factors: The Journal of the Human Factors and Ergonomics Society. 37 (2): 381–394. doi:10.1518/001872095779064555. ISSN 0018-7208. S2CID 2147200.
  3. ^ a b Kaber, David B.; Endsley, Mica R. (1997). "Out-of-the-loop performance problems and the use of intermediate levels of automation for improved control system functioning and safety". Process Safety Progress. 16 (3): 126–131. doi:10.1002/prs.680160304. ISSN 1066-8527. S2CID 14070085.
  4. ^ "DIN SPEC 91516:2025-07, Human performance regarding the dynamic driving task for the specification of AI in ATO" (in German). DIN Media GmbH. doi:10.31030/3625051. Retrieved 28 June 2025.
  5. ^ Nadj, Mario; Maedche, Alexander; Schieder, Christian (1 August 2020). "The effect of interactive analytical dashboard features on situation awareness and task performance". Decision Support Systems. 135: 113322. doi:10.1016/j.dss.2020.113322. ISSN 0167-9236. PMC 7234950. PMID 32834262.
  6. ^ Endsley, Mica R. (February 2017). "From Here to Autonomy: Lessons Learned From Human–Automation Research". Human Factors: The Journal of the Human Factors and Ergonomics Society. 59 (1): 5–27. doi:10.1177/0018720816681350. ISSN 0018-7208. PMID 28146676. S2CID 3771328.
  7. ^ Merat, Natasha; Seppelt, Bobbie; Louw, Tyron; Engström, Johan; Lee, John D.; Johansson, Emma; Green, Charles A.; Katazaki, Satoshi; Monk, Chris; Itoh, Makoto; McGehee, Daniel; Sunda, Takashi; Unoura, Kiyozumi; Victor, Trent; Schieben, Anna; Keinath, Andreas (1 February 2019). "The "Out-of-the-Loop" concept in automated driving: proposed definition, measures and implications". Cognition, Technology & Work. 21 (1): 87–98. doi:10.1007/s10111-018-0525-8. hdl:1721.1/118125. ISSN 1435-5566. S2CID 254136498.
  8. ^ Meilander, Willard C. (6 June 1972). "Method and apparatus for vehicle traffic control". Retrieved 26 March 2023.
  9. ^ Wiener, Earl L.; Nagel, David C. (1988). Human Factors in Aviation. Gulf Professional Publishing. ISBN 978-0-12-750031-7.
  10. ^ Berberian, Bruno; Gouraud, Jonas; Somon, Bertille; Sahai, Aisha; Le Goff, Kevin (2017). "My Brain is Out of the Loop: A Neuroergonomic Approach of OOTL Phenomenon". Augmented Cognition. Neurocognition and Machine Learning. Lecture Notes in Computer Science. Vol. 10284. Springer International Publishing. pp. 3–18. doi:10.1007/978-3-319-58628-1_1. ISBN 978-3-319-58627-4.
  11. ^ Wang, Aobo; Guo, Beiyuan; Du, Hao; Bao, Haifeng (2022). "Impact of Automation at Different Cognitive Stages on High-Speed Train Driving Performance". IEEE Transactions on Intelligent Transportation Systems. 23 (12): 24599–24608. doi:10.1109/TITS.2022.3211709. ISSN 1558-0016. S2CID 253325209.