Mathematical function
K -convex functions , first introduced by Scarf ,[ 1] are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the
(
s
,
S
)
{\displaystyle (s,S)}
policy in inventory control theory . The policy is characterized by two numbers s and S ,
S
≥
s
{\displaystyle S\geq s}
, such that when the inventory level falls below level s , an order is issued for a quantity that brings the inventory up to level S , and nothing is ordered otherwise. Gallego and Sethi [ 2] have generalized the concept of K -convexity to higher dimensional Euclidean spaces.
Two equivalent definitions are as follows:
Definition 1 (The original definition)[ edit ]
Let K be a non-negative real number. A function
g
:
R
→
R
{\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} }
is K -convex if
g
(
u
)
+
z
[
g
(
u
)
−
g
(
u
−
b
)
b
]
≤
g
(
u
+
z
)
+
K
{\displaystyle g(u)+z\left[{\frac {g(u)-g(u-b)}{b}}\right]\leq g(u+z)+K}
for any
u
,
z
≥
0
,
{\displaystyle u,z\geq 0,}
and
b
>
0
{\displaystyle b>0}
.
Definition 2 (Definition with geometric interpretation)[ edit ]
A function
g
:
R
→
R
{\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} }
is K -convex if
g
(
λ
x
+
λ
¯
y
)
≤
λ
g
(
x
)
+
λ
¯
[
g
(
y
)
+
K
]
{\displaystyle g(\lambda x+{\bar {\lambda }}y)\leq \lambda g(x)+{\bar {\lambda }}[g(y)+K]}
for all
x
≤
y
,
λ
∈
[
0
,
1
]
{\displaystyle x\leq y,\lambda \in [0,1]}
, where
λ
¯
=
1
−
λ
{\displaystyle {\bar {\lambda }}=1-\lambda }
.
This definition admits a simple geometric interpretation related to the concept of visibility.[ 3] Let
a
≥
0
{\displaystyle a\geq 0}
. A point
(
x
,
f
(
x
)
)
{\displaystyle (x,f(x))}
is said to be visible from
(
y
,
f
(
y
)
+
a
)
{\displaystyle (y,f(y)+a)}
if all intermediate points
(
λ
x
+
λ
¯
y
,
f
(
λ
x
+
λ
¯
y
)
)
,
0
≤
λ
≤
1
{\displaystyle (\lambda x+{\bar {\lambda }}y,f(\lambda x+{\bar {\lambda }}y)),0\leq \lambda \leq 1}
lie below the line segment joining these two points. Then the geometric characterization of K -convexity can be obtain as:
A function
g
{\displaystyle g}
is K -convex if and only if
(
x
,
g
(
x
)
)
{\displaystyle (x,g(x))}
is visible from
(
y
,
g
(
y
)
+
K
)
{\displaystyle (y,g(y)+K)}
for all
y
≥
x
{\displaystyle y\geq x}
.
Proof of Equivalence [ edit ]
It is sufficient to prove that the above definitions can be transformed to each other. This can be seen by using the transformation
λ
=
z
/
(
b
+
z
)
,
x
=
u
−
b
,
y
=
u
+
z
.
{\displaystyle \lambda =z/(b+z),\quad x=u-b,\quad y=u+z.}
[ 4]
If
g
:
R
→
R
{\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} }
is K -convex, then it is L -convex for any
L
≥
K
{\displaystyle L\geq K}
. In particular, if
g
{\displaystyle g}
is convex, then it is also K -convex for any
K
≥
0
{\displaystyle K\geq 0}
.
If
g
1
{\displaystyle g_{1}}
is K -convex and
g
2
{\displaystyle g_{2}}
is L -convex, then for
α
≥
0
,
β
≥
0
,
g
=
α
g
1
+
β
g
2
{\displaystyle \alpha \geq 0,\beta \geq 0,\;g=\alpha g_{1}+\beta g_{2}}
is
(
α
K
+
β
L
)
{\displaystyle (\alpha K+\beta L)}
-convex.
If
g
{\displaystyle g}
is K -convex and
ξ
{\displaystyle \xi }
is a random variable such that
E
|
g
(
x
−
ξ
)
|
<
∞
{\displaystyle E|g(x-\xi )|<\infty }
for all
x
{\displaystyle x}
, then
E
g
(
x
−
ξ
)
{\displaystyle Eg(x-\xi )}
is also K -convex.
If
g
:
R
→
R
{\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} }
is K -convex, restriction of
g
{\displaystyle g}
on any convex set
D
⊂
R
{\displaystyle \mathbb {D} \subset \mathbb {R} }
is K -convex.
If
g
:
R
→
R
{\displaystyle g:\mathbb {R} \rightarrow \mathbb {R} }
is a continuous K -convex function and
g
(
y
)
→
∞
{\displaystyle g(y)\rightarrow \infty }
as
|
y
|
→
∞
{\displaystyle |y|\rightarrow \infty }
, then there exit scalars
s
{\displaystyle s}
and
S
{\displaystyle S}
with
s
≤
S
{\displaystyle s\leq S}
such that
g
(
S
)
≤
g
(
y
)
{\displaystyle g(S)\leq g(y)}
, for all
y
∈
R
{\displaystyle y\in \mathbb {R} }
;
g
(
S
)
+
K
=
g
(
s
)
<
g
(
y
)
{\displaystyle g(S)+K=g(s)<g(y)}
, for all
y
<
s
{\displaystyle y<s}
;
g
(
y
)
{\displaystyle g(y)}
is a decreasing function on
(
−
∞
,
s
)
{\displaystyle (-\infty ,s)}
;
g
(
y
)
≤
g
(
z
)
+
K
{\displaystyle g(y)\leq g(z)+K}
for all
y
,
z
{\displaystyle y,z}
with
s
≤
y
≤
z
{\displaystyle s\leq y\leq z}
.
^ Scarf, H. (1960). The Optimality of (S, s) Policies in the Dynamic Inventory Problem . Stanford, CA: Stanford University Press. p. Chapter 13.
^ Gallego, G. and Sethi, S. P. (2005). K -convexity in ℜn . Journal of Optimization Theory & Applications, 127(1):71-88.
^ Kolmogorov, A. N.; Fomin, S. V. (1970). Introduction to Real Analysis . New York: Dover Publications Inc.
^ Sethi S P, Cheng F. Optimality of (s, S) Policies in Inventory Models with Markovian Demand. INFORMS, 1997.