Integral transform
In the mathematical field of integral geometry , the Funk transform (also known as Minkowski–Funk transform , Funk–Radon transform or spherical Radon transform ) is an integral transform defined by integrating a function on great circles of the sphere . It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904) . It is closely related to the Radon transform . The original motivation for studying the Funk transform was to describe Zoll metrics on the sphere.
The Funk transform is defined as follows. Let ƒ be a continuous function on the 2-sphere S 2 in R 3 . Then, for a unit vector x , let
F
f
(
x
)
=
∫
u
∈
C
(
x
)
f
(
u
)
d
s
(
u
)
{\displaystyle Ff(\mathbf {x} )=\int _{\mathbf {u} \in C(\mathbf {x} )}f(\mathbf {u} )\,ds(\mathbf {u} )}
where the integral is carried out with respect to the arclength ds of the great circle C (x ) consisting of all unit vectors perpendicular to x :
C
(
x
)
=
{
u
∈
S
2
∣
u
⋅
x
=
0
}
.
{\displaystyle C(\mathbf {x} )=\{\mathbf {u} \in S^{2}\mid \mathbf {u} \cdot \mathbf {x} =0\}.}
The Funk transform annihilates all odd functions , and so it is natural to confine attention to the case when ƒ is even. In that case, the Funk transform takes even (continuous) functions to even continuous functions, and is furthermore invertible.
Spherical harmonics [ edit ]
Every square-integrable function
f
∈
L
2
(
S
2
)
{\displaystyle f\in L^{2}(S^{2})}
on the sphere can be decomposed into spherical harmonics
Y
n
k
{\displaystyle Y_{n}^{k}}
f
=
∑
n
=
0
∞
∑
k
=
−
n
n
f
^
(
n
,
k
)
Y
n
k
.
{\displaystyle f=\sum _{n=0}^{\infty }\sum _{k=-n}^{n}{\hat {f}}(n,k)Y_{n}^{k}.}
Then the Funk transform of f reads
F
f
=
∑
n
=
0
∞
∑
k
=
−
n
n
P
n
(
0
)
f
^
(
n
,
k
)
Y
n
k
{\displaystyle Ff=\sum _{n=0}^{\infty }\sum _{k=-n}^{n}P_{n}(0){\hat {f}}(n,k)Y_{n}^{k}}
where
P
2
n
+
1
(
0
)
=
0
{\displaystyle P_{2n+1}(0)=0}
for odd values and
P
2
n
(
0
)
=
(
−
1
)
n
1
⋅
3
⋅
5
⋯
2
n
−
1
2
⋅
4
⋅
6
⋯
2
n
=
(
−
1
)
n
(
2
n
−
1
)
!
!
(
2
n
)
!
!
{\displaystyle P_{2n}(0)=(-1)^{n}\,{\frac {1\cdot 3\cdot 5\cdots 2n-1}{2\cdot 4\cdot 6\cdots 2n}}=(-1)^{n}\,{\frac {(2n-1)!!}{(2n)!!}}}
for even values. This result was shown by Funk (1913) .
Another inversion formula is due to Helgason (1999) .
As with the Radon transform, the inversion formula relies on the dual transform F * defined by
(
F
∗
f
)
(
p
,
x
)
=
1
2
π
cos
p
∫
‖
u
‖
=
1
,
x
⋅
u
=
sin
p
f
(
u
)
|
d
u
|
.
{\displaystyle (F^{*}f)(p,\mathbf {x} )={\frac {1}{2\pi \cos p}}\int _{\|\mathbf {u} \|=1,\mathbf {x} \cdot \mathbf {u} =\sin p}f(\mathbf {u} )\,|d\mathbf {u} |.}
This is the average value of the circle function ƒ over circles of arc distance p from the point x . The inverse transform is given by
f
(
x
)
=
1
2
π
{
d
d
u
∫
0
u
F
∗
(
F
f
)
(
cos
−
1
v
,
x
)
v
(
u
2
−
v
2
)
−
1
/
2
d
v
}
u
=
1
.
{\displaystyle f(\mathbf {x} )={\frac {1}{2\pi }}\left\{{\frac {d}{du}}\int _{0}^{u}F^{*}(Ff)(\cos ^{-1}v,\mathbf {x} )v(u^{2}-v^{2})^{-1/2}\,dv\right\}_{u=1}.}
The classical formulation is invariant under the rotation group SO(3) . It is also possible to formulate the Funk transform in a manner that makes it invariant under the special linear group SL(3,R ) (Bailey et al. 2003 ). Suppose that ƒ is a homogeneous function of degree −2 on R 3 . Then, for linearly independent vectors x and y , define a function φ by the line integral
φ
(
x
,
y
)
=
1
2
π
∮
f
(
u
x
+
v
y
)
(
u
d
v
−
v
d
u
)
{\displaystyle \varphi (\mathbf {x} ,\mathbf {y} )={\frac {1}{2\pi }}\oint f(u\mathbf {x} +v\mathbf {y} )(u\,dv-v\,du)}
taken over a simple closed curve encircling the origin once. The differential form
f
(
u
x
+
v
y
)
(
u
d
v
−
v
d
u
)
{\displaystyle f(u\mathbf {x} +v\mathbf {y} )(u\,dv-v\,du)}
is closed , which follows by the homogeneity of ƒ . By a change of variables , φ satisfies
ϕ
(
a
x
+
b
y
,
c
x
+
d
y
)
=
1
|
a
d
−
b
c
|
ϕ
(
x
,
y
)
,
{\displaystyle \phi (a\mathbf {x} +b\mathbf {y} ,c\mathbf {x} +d\mathbf {y} )={\frac {1}{|ad-bc|}}\phi (\mathbf {x} ,\mathbf {y} ),}
and so gives a homogeneous function of degree −1 on the exterior square of R 3 ,
F
f
(
x
∧
y
)
=
ϕ
(
x
,
y
)
.
{\displaystyle Ff(\mathbf {x} \wedge \mathbf {y} )=\phi (\mathbf {x} ,\mathbf {y} ).}
The function Fƒ : Λ2 R 3 → R agrees with the Funk transform when ƒ is the degree −2 homogeneous extension of a function on the sphere and the projective space associated to Λ2 R 3 is identified with the space of all circles on the sphere. Alternatively, Λ2 R 3 can be identified with R 3 in an SL(3,R )-invariant manner, and so the Funk transform F maps smooth even homogeneous functions of degree −2 on R 3 \{0} to smooth even homogeneous functions of degree −1 on R 3 \{0}.
The Funk-Radon transform is used in the Q-Ball method for Diffusion MRI introduced by Tuch (2004) .
It is also related to intersection bodies in convex geometry.
Let
K
⊂
R
d
{\displaystyle K\subset \mathbb {R} ^{d}}
be a star body with radial function
ρ
K
(
x
)
=
max
{
t
:
t
x
∈
K
}
,
{\displaystyle \rho _{K}({\boldsymbol {x}})=\max\{t:t{\boldsymbol {x}}\in K\},}
x
∈
S
d
−
1
{\displaystyle x\in S^{d-1}}
.
Then the intersection body IK of K has the radial function
ρ
I
K
=
F
ρ
K
{\displaystyle \rho _{IK}=F\rho _{K}}
(Gardner 2006 , p. 305).
Bailey, T. N.; Eastwood, Michael G.; Gover, A. Rod; Mason, L. J. (2003), "Complex analysis and the Funk transform" (PDF) , Journal of the Korean Mathematical Society , 40 (4): 577– 593, doi :10.4134/JKMS.2003.40.4.577 , MR 1995065 , archived from the original (PDF) on 2016-03-03, retrieved 2009-06-19
Dann, Susanna (2010), On the Minkowski-Funk Transform , arXiv :1003.5565 , Bibcode :2010arXiv1003.5565D
Funk, Paul (1913), "Über Flächen mit lauter geschlossenen geodätischen Linien" , Mathematische Annalen , 74 (2): 278– 300, doi :10.1007/BF01456044 .
Funk, Paul (1915), "Über eine geometrische Anwendung der Abelschen Integralgleichung" , Mathematische Annalen , 77 (1): 129– 135, doi :10.1007/BF01456824 , MR 1511851 .
Guillemin, Victor (1976), "The Radon transform on Zoll surfaces", Advances in Mathematics , 22 (1): 85– 119, doi :10.1016/0001-8708(76)90139-0 , MR 0426063 .
Helgason, Sigurdur (1999), The Radon transform , Progress in Mathematics, vol. 5 (2nd ed.), Boston, MA: Birkhäuser Boston, ISBN 978-0-8176-4109-2 , MR 1723736 .
Minkowski, Hermann (1904), "About bodies of constant width", Mathematics Sbornik , 25 : 505– 508
Tuch, David S. (2004). "Q-Ball imaging". Magn. Reson. Med . 52 (6): 1358– 1372. doi :10.1002/mrm.20279 . PMID 15562495 .
Gardner, Richard J. (2006), Geometric Tomography , Cambridge University Press, ISBN 978-0-521-86680-4