Polynomial sequence
In combinatorics , the Eulerian number
A
(
n
,
k
)
{\textstyle A(n,k)}
is the number of permutations of the numbers 1 to
n
{\textstyle n}
in which exactly
k
{\textstyle k}
elements are greater than the previous element (permutations with
k
{\textstyle k}
"ascents").
Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis .
The polynomials presently known as Eulerian polynomials in Euler's work from 1755, Institutiones calculi differentialis, part 2, p. 485/6. The coefficients of these polynomials are known as Eulerian numbers.
Other notations for
A
(
n
,
k
)
{\textstyle A(n,k)}
are
E
(
n
,
k
)
{\textstyle E(n,k)}
and
⟨
n
k
⟩
{\displaystyle \textstyle \left\langle {n \atop k}\right\rangle }
.
The Eulerian polynomials
A
n
(
t
)
{\displaystyle A_{n}(t)}
are defined by the exponential generating function
∑
n
=
0
∞
A
n
(
t
)
x
n
n
!
=
t
−
1
t
−
e
(
t
−
1
)
x
=
(
1
−
e
(
t
−
1
)
x
−
1
t
−
1
)
−
1
.
{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}=\left(1-{\frac {e^{(t-1)x}-1}{t-1}}\right)^{-1}.}
The Eulerian numbers
A
(
n
,
k
)
{\displaystyle A(n,k)}
may be defined as the coefficients of the Eulerian polynomials:
A
n
(
t
)
=
∑
k
=
0
n
A
(
n
,
k
)
t
k
.
{\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}
An explicit formula for
A
(
n
,
k
)
{\textstyle A(n,k)}
is[ 1]
A plot of the Eulerian numbers with the second argument fixed to 5.
A
(
n
,
k
)
=
∑
i
=
0
k
(
−
1
)
i
(
n
+
1
i
)
(
k
+
1
−
i
)
n
.
{\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}
For fixed
n
{\textstyle n}
there is a single permutation which has 0 ascents:
(
n
,
n
−
1
,
n
−
2
,
…
,
1
)
{\textstyle (n,n-1,n-2,\ldots ,1)}
. Indeed, as
(
n
0
)
=
1
{\displaystyle {\tbinom {n}{0}}=1}
for all
n
{\displaystyle n}
,
A
(
n
,
0
)
=
1
{\textstyle A(n,0)=1}
. This formally includes the empty collection of numbers,
n
=
0
{\textstyle n=0}
. And so
A
0
(
t
)
=
A
1
(
t
)
=
1
{\textstyle A_{0}(t)=A_{1}(t)=1}
.
For
k
=
1
{\textstyle k=1}
the explicit formula implies
A
(
n
,
1
)
=
2
n
−
(
n
+
1
)
{\textstyle A(n,1)=2^{n}-(n+1)}
, a sequence in
n
{\displaystyle n}
that reads
0
,
0
,
1
,
4
,
11
,
26
,
57
,
…
{\textstyle 0,0,1,4,11,26,57,\dots }
.
Fully reversing a permutation with
k
{\textstyle k}
ascents creates another permutation in which there are
n
−
k
−
1
{\textstyle n-k-1}
ascents. Therefore
A
(
n
,
k
)
=
A
(
n
,
n
−
k
−
1
)
{\textstyle A(n,k)=A(n,n-k-1)}
. So there is also a single permutation which has
n
−
1
{\textstyle n-1}
ascents, namely the rising permutation
(
1
,
2
,
…
,
n
)
{\textstyle (1,2,\ldots ,n)}
. So also
A
(
n
,
n
−
1
)
{\textstyle A(n,n-1)}
equals
1
{\displaystyle 1}
.
A lavish upper bound is
A
(
n
,
k
)
≤
(
k
+
1
)
n
⋅
(
n
+
2
)
k
{\textstyle A(n,k)\leq (k+1)^{n}\cdot (n+2)^{k}}
. Between the bounds just discussed, the value exceeds
1
{\displaystyle 1}
.
For
k
≥
n
>
0
{\textstyle k\geq n>0}
, the values are formally zero, meaning many sums over
k
{\textstyle k}
can be written with an upper index only up to
n
−
1
{\textstyle n-1}
. It also means that the polynomials
A
n
(
t
)
{\displaystyle A_{n}(t)}
are really of degree
n
−
1
{\textstyle n-1}
for
n
>
0
{\textstyle n>0}
.
A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle . It shares some common characteristics with Pascal's triangle . Values of
A
(
n
,
k
)
{\textstyle A(n,k)}
(sequence A008292 in the OEIS ) for
0
≤
n
≤
9
{\textstyle 0\leq n\leq 9}
are:
k
n
0
1
2
3
4
5
6
7
8
0
1
1
1
2
1
1
3
1
4
1
4
1
11
11
1
5
1
26
66
26
1
6
1
57
302
302
57
1
7
1
120
1191
2416
1191
120
1
8
1
247
4293
15619
15619
4293
247
1
9
1
502
14608
88234
156190
88234
14608
502
1
For larger values of
n
{\textstyle n}
,
A
(
n
,
k
)
{\textstyle A(n,k)}
can also be calculated using the recursive formula[ 2]
A
(
n
,
k
)
=
(
n
−
k
)
A
(
n
−
1
,
k
−
1
)
+
(
k
+
1
)
A
(
n
−
1
,
k
)
.
{\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}
This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory.
For small values of
n
{\textstyle n}
and
k
{\textstyle k}
, the values of
A
(
n
,
k
)
{\textstyle A(n,k)}
can be calculated by hand. For example
n
k
Permutations
A (n , k )
1
0
(1)
A (1,0) = 1
2
0
(2, 1)
A (2,0) = 1
1
(1, 2 )
A (2,1) = 1
3
0
(3, 2, 1)
A (3,0) = 1
1
(1, 3 , 2), (2, 1, 3 ), (2, 3 , 1) and (3, 1, 2 )
A (3,1) = 4
2
(1, 2 , 3 )
A (3,2) = 1
Applying the recurrence to one example, we may find
A
(
4
,
1
)
=
(
4
−
1
)
A
(
3
,
0
)
+
(
1
+
1
)
A
(
3
,
1
)
=
3
⋅
1
+
2
⋅
4
=
11.
{\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}
Likewise, the Eulerian polynomials can be computed by the recurrence
A
0
(
t
)
=
1
,
{\displaystyle A_{0}(t)=1,}
A
n
(
t
)
=
A
n
−
1
′
(
t
)
⋅
t
(
1
−
t
)
+
A
n
−
1
(
t
)
⋅
(
1
+
(
n
−
1
)
t
)
,
for
n
>
1.
{\displaystyle A_{n}(t)=A_{n-1}'(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n>1.}
The second formula can be cast into an inductive form,
A
n
(
t
)
=
∑
k
=
0
n
−
1
(
n
k
)
A
k
(
t
)
⋅
(
t
−
1
)
n
−
1
−
k
,
for
n
>
1.
{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n>1.}
For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations of
n
{\displaystyle n}
elements, so their sum equals the factorial
n
!
{\displaystyle n!}
. I.e.
∑
k
=
0
n
−
1
A
(
n
,
k
)
=
n
!
,
for
n
>
0.
{\displaystyle \sum _{k=0}^{n-1}A(n,k)=n!,{\text{ for }}n>0.}
as well as
A
(
0
,
0
)
=
0
!
{\displaystyle A(0,0)=0!}
. To avoid conflict with the empty sum convention, it is convenient to simply state the theorems for
n
>
0
{\displaystyle n>0}
only.
Much more generally, for a fixed function
f
:
R
→
C
{\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} }
integrable on the interval
(
0
,
n
)
{\displaystyle (0,n)}
[ 3]
∑
k
=
0
n
−
1
A
(
n
,
k
)
f
(
k
)
=
n
!
∫
0
1
⋯
∫
0
1
f
(
⌊
x
1
+
⋯
+
x
n
⌋
)
d
x
1
⋯
d
x
n
{\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}
Worpitzky's identity [ 4] expresses
x
n
{\textstyle x^{n}}
as the linear combination of Eulerian numbers with binomial coefficients :
∑
k
=
0
n
−
1
A
(
n
,
k
)
(
x
+
k
n
)
=
x
n
.
{\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}
From it, it follows that
∑
k
=
1
m
k
n
=
∑
k
=
0
n
−
1
A
(
n
,
k
)
(
m
+
k
+
1
n
+
1
)
.
{\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}
The alternating sum of the Eulerian numbers for a fixed value of
n
{\textstyle n}
is related to the Bernoulli number
B
n
+
1
{\textstyle B_{n+1}}
∑
k
=
0
n
−
1
(
−
1
)
k
A
(
n
,
k
)
=
2
n
+
1
(
2
n
+
1
−
1
)
B
n
+
1
n
+
1
,
for
n
>
0.
{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n>0.}
Furthermore,
∑
k
=
0
n
−
1
(
−
1
)
k
A
(
n
,
k
)
(
n
−
1
k
)
=
0
,
for
n
>
1
{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n>1}
and
∑
k
=
0
n
−
1
(
−
1
)
k
A
(
n
,
k
)
(
n
k
)
=
(
n
+
1
)
B
n
,
for
n
>
1
{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n>1}
The symmetry property implies:
A
n
(
t
)
=
t
n
−
1
A
n
(
t
−
1
)
{\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}
The Eulerian numbers are involved in the generating function for the sequence of n th powers:
∑
i
=
1
∞
i
n
x
i
=
1
(
1
−
x
)
n
+
1
∑
k
=
0
n
A
(
n
,
k
)
x
k
+
1
=
x
(
1
−
x
)
n
+
1
A
n
(
x
)
{\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}
An explicit expression for Eulerian polynomials is[ 5]
A
n
(
t
)
=
∑
k
=
0
n
{
n
k
}
k
!
(
t
−
1
)
n
−
k
{\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}
where
{
n
k
}
{\textstyle \left\{{n \atop k}\right\}}
is the Stirling number of the second kind .
Eulerian numbers of the second order [ edit ]
The permutations of the multiset
{
1
,
1
,
2
,
2
,
…
,
n
,
n
}
{\textstyle \{1,1,2,2,\ldots ,n,n\}}
which have the property that for each k , all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number
(
2
n
−
1
)
!
!
{\textstyle (2n-1)!!}
.
The Eulerian number of the second order, denoted
⟨
⟨
n
m
⟩
⟩
{\textstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle }
, counts the number of all such permutations that have exactly m ascents. For instance, for n = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:
332211,
221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,
112233, 122133, 112332, 123321, 133122, 122331.
The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition:
⟨
⟨
n
k
⟩
⟩
=
(
2
n
−
k
−
1
)
⟨
⟨
n
−
1
k
−
1
⟩
⟩
+
(
k
+
1
)
⟨
⟨
n
−
1
k
⟩
⟩
,
{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}
with initial condition for n = 0, expressed in Iverson bracket notation:
⟨
⟨
0
k
⟩
⟩
=
[
k
=
0
]
.
{\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}
Correspondingly, the Eulerian polynomial of second order, here denoted P n (no standard notation exists for them) are
P
n
(
x
)
:=
∑
k
=
0
n
⟨
⟨
n
k
⟩
⟩
x
k
{\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}
and the above recurrence relations are translated into a recurrence relation for the sequence P n (x ):
P
n
+
1
(
x
)
=
(
2
n
x
+
1
)
P
n
(
x
)
−
x
(
x
−
1
)
P
n
′
(
x
)
{\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}
with initial condition
P
0
(
x
)
=
1.
{\displaystyle P_{0}(x)=1.}
. The latter recurrence may be written in a somewhat more compact form by means of an integrating factor:
(
x
−
1
)
−
2
n
−
2
P
n
+
1
(
x
)
=
(
x
(
1
−
x
)
−
2
n
−
1
P
n
(
x
)
)
′
{\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}
so that the rational function
u
n
(
x
)
:=
(
x
−
1
)
−
2
n
P
n
(
x
)
{\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}
satisfies a simple autonomous recurrence:
u
n
+
1
=
(
x
1
−
x
u
n
)
′
,
u
0
=
1
{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}
Whence one obtains the Eulerian polynomials of second order as
P
n
(
x
)
=
(
1
−
x
)
2
n
u
n
(
x
)
{\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)}
, and the Eulerian numbers of second order as their coefficients.
The following table displays the first few second-order Eulerian numbers:
k
n
0
1
2
3
4
5
6
7
8
0
1
1
1
2
1
2
3
1
8
6
4
1
22
58
24
5
1
52
328
444
120
6
1
114
1452
4400
3708
720
7
1
240
5610
32120
58140
33984
5040
8
1
494
19950
195800
644020
785304
341136
40320
9
1
1004
67260
1062500
5765500
12440064
11026296
3733920
362880
The sum of the n -th row, which is also the value
P
n
(
1
)
{\textstyle P_{n}(1)}
, is
(
2
n
−
1
)
!
!
{\textstyle (2n-1)!!}
.
Indexing the second-order Eulerian numbers comes in three flavors:
(sequence A008517 in the OEIS ) following Riordan and Comtet,
(sequence A201637 in the OEIS ) following Graham, Knuth, and Patashnik,
(sequence A340556 in the OEIS ), extending the definition of Gessel and Stanley.
Eulerus, Leonardus [Leonhard Euler] (1755). Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum [Foundations of differential calculus, with applications to finite analysis and series] . Academia imperialis scientiarum Petropolitana; Berolini: Officina Michaelis.
Carlitz, L. (1959). "Eulerian Numbers and polynomials". Math. Mag . 32 (5): 247– 260. doi :10.2307/3029225 . JSTOR 3029225 .
Gould, H. W. (1978). "Evaluation of sums of convolved powers using Stirling and Eulerian Numbers" . Fib. Quart . 16 (6): 488– 497. doi :10.1080/00150517.1978.12430271 .
Desarmenien, Jacques; Foata, Dominique (1992). "The signed Eulerian numbers" . Discrete Math . 99 (1– 3): 49– 58. doi :10.1016/0012-365X(92)90364-L .
Lesieur, Leonce; Nicolas, Jean-Louis (1992). "On the Eulerian Numbers M=max (A(n,k))" . Europ. J. Combinat . 13 (5): 379– 399. doi :10.1016/S0195-6698(05)80018-6 .
Butzer, P. L.; Hauss, M. (1993). "Eulerian numbers with fractional order parameters" . Aequationes Mathematicae . 46 (1– 2): 119– 142. doi :10.1007/bf01834003 . S2CID 121868847 .
Koutras, M.V. (1994). "Eulerian numbers associated with sequences of polynomials" . Fib. Quart . 32 (1): 44– 57. doi :10.1080/00150517.1994.12429255 .
Graham; Knuth; Patashnik (1994). Concrete Mathematics : A Foundation for Computer Science (2nd ed.). Addison-Wesley. pp. 267– 272.
Hsu, Leetsch C. ; Jau-Shyong Shiue, Peter (1999). "On certain summation problems and generalizations of Eulerian polynomials and numbers" . Discrete Math . 204 (1– 3): 237– 247. doi :10.1016/S0012-365X(98)00379-3 .
Boyadzhiev, Khristo N. (2007). "Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials". arXiv :0710.1124 [math.CA ].
Petersen, T. Kyle (2015). "Eulerian numbers". Eulerian Numbers . Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser. pp. 3– 18. doi :10.1007/978-1-4939-3091-3_1 . ISBN 978-1-4939-3090-6 .