In mathematics, the double Fourier sphere (DFS) method is a technique that transforms a function defined on the surface of the sphere to a function defined on a rectangular domain while preserving periodicity in both the longitude and latitude directions.
First, a function
on the sphere is written as
using spherical coordinates, i.e.,
![{\displaystyle f(\lambda ,\theta )=f(\cos \lambda \sin \theta ,\sin \lambda \sin \theta ,\cos \theta ),(\lambda ,\theta )\in [-\pi ,\pi ]\times [0,\pi ].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/943c62468a9c362f553f76faf5960f542a27dfc2)
The function
is
-periodic in
, but not periodic in
. The periodicity in the latitude direction has been lost. To recover it, the function is "doubled up” and a related function on
is defined as
![{\displaystyle {\tilde {f}}(\lambda ,\theta )={\begin{cases}g(\lambda +\pi ,\theta ),&(\lambda ,\theta )\in [-\pi ,0]\times [0,\pi ],\\h(\lambda ,\theta ),&(\lambda ,\theta )\in [0,\pi ]\times [0,\pi ],\\g(\lambda ,-\theta ),&(\lambda ,\theta )\in [0,\pi ]\times [-\pi ,0],\\h(\lambda +\pi ,-\theta ),&(\lambda ,\theta )\in [-\pi ,0]\times [-\pi ,0],\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac7c8ce23921906a494e2dc05bdea5ced98d4396)
where
and
for
. The new function
is
-periodic in
and
, and is constant along the lines
and
, corresponding to the poles.
The function
can be expanded into a double Fourier series

The DFS method was proposed by Merilees[1] and developed further by Steven Orszag.[2] The DFS method has been the subject of relatively few investigations since (a notable exception is Fornberg's work),[3] perhaps due to the dominance of spherical harmonics expansions. Over the last fifteen years it has begun to be used for the computation of gravitational fields near black holes[4] and to novel space-time spectral analysis.[5]
- ^ P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on a sphere, Atmosphere, 11 (1973), pp. 13–20
- ^ S. A. Orszag, Fourier series on spheres, Mon. Wea. Rev., 102 (1974), pp. 56–75.
- ^ B. Fornberg, A pseudospectral approach for polar and spherical geometries, SIAM J. Sci. Comp, 16 (1995), pp. 1071–1081
- ^ R. Bartnik and A. Norton, Numerical methods for the Einstein equations in null quasispherical coordinates, SIAM J. Sci. Comp, 22 (2000), pp. 917–950
- ^ C. Sun, J. Li, F.-F. Jin, and F. Xie, Contrasting meridional structures of stratospheric and tropospheric planetary wave variability in the northern hemisphere, Tellus A, 66 (2014)