Triangle derived from a given triangle and a coplanar point
In Euclidean geometry, a circumcevian triangle is a special triangle associated with a reference triangle and a point in the plane of the triangle. It is also associated with the circumcircle of the reference triangle.
Circumcircle of △ABC; lines between the vertices of △ABC and P
Circumcevian triangle △A'B'C' of P
Let P be a point in the plane of the reference triangle △ABC. Let the lines AP, BP, CP intersect the circumcircle of △ABC at A', B', C'. The triangle △A'B'C' is called the circumcevian triangle of P with reference to △ABC.[1]
Let a,b,c be the side lengths of triangle △ABC and let the trilinear coordinates of P be α : β : γ. Then the trilinear coordinates of the vertices of the circumcevian triangle of P are as follows:[2]