In functional analysis , a branch of mathematics , the Baskakov operators are generalizations of Bernstein polynomials , Szász–Mirakyan operators , and Lupas operators . They are defined by
[
L
n
(
f
)
]
(
x
)
=
∑
k
=
0
∞
(
−
1
)
k
x
k
k
!
ϕ
n
(
k
)
(
x
)
f
(
k
n
)
{\displaystyle [{\mathcal {L}}_{n}(f)](x)=\sum _{k=0}^{\infty }{(-1)^{k}{\frac {x^{k}}{k!}}\phi _{n}^{(k)}(x)f\left({\frac {k}{n}}\right)}}
where
x
∈
[
0
,
b
)
⊂
R
{\displaystyle x\in [0,b)\subset \mathbb {R} }
(
b
{\displaystyle b}
can be
∞
{\displaystyle \infty }
),
n
∈
N
{\displaystyle n\in \mathbb {N} }
, and
(
ϕ
n
)
n
∈
N
{\displaystyle (\phi _{n})_{n\in \mathbb {N} }}
is a sequence of functions defined on
[
0
,
b
]
{\displaystyle [0,b]}
that have the following properties for all
n
,
k
∈
N
{\displaystyle n,k\in \mathbb {N} }
:
ϕ
n
∈
C
∞
[
0
,
b
]
{\displaystyle \phi _{n}\in {\mathcal {C}}^{\infty }[0,b]}
. Alternatively,
ϕ
n
{\displaystyle \phi _{n}}
has a Taylor series on
[
0
,
b
)
{\displaystyle [0,b)}
.
ϕ
n
(
0
)
=
1
{\displaystyle \phi _{n}(0)=1}
ϕ
n
{\displaystyle \phi _{n}}
is completely monotone, i.e.
(
−
1
)
k
ϕ
n
(
k
)
≥
0
{\displaystyle (-1)^{k}\phi _{n}^{(k)}\geq 0}
.
There is an integer
c
{\displaystyle c}
such that
ϕ
n
(
k
+
1
)
=
−
n
ϕ
n
+
c
(
k
)
{\displaystyle \phi _{n}^{(k+1)}=-n\phi _{n+c}^{(k)}}
whenever
n
>
max
{
0
,
−
c
}
{\displaystyle n>\max\{0,-c\}}
They are named after V. A. Baskakov, who studied their convergence to bounded, continuous functions.[ 1]
The Baskakov operators are linear and positive.[ 2]
Baskakov, V. A. (1957). Пример последовательности линейных положительных операторов в пространстве непрерывных функций [An example of a sequence of linear positive operators in the space of continuous functions]. Doklady Akademii Nauk SSSR (in Russian). 113 : 249– 251.
^ Agrawal, P. N. (2001) [1994], "Baskakov operators" , in Michiel Hazewinkel (ed.), Encyclopedia of Mathematics , EMS Press , ISBN 1-4020-0609-8
^ Agrawal, P. N.; T. A. K. Sinha (2001) [1994], "Bernstein–Baskakov–Kantorovich operator" , in Michiel Hazewinkel (ed.), Encyclopedia of Mathematics , EMS Press , ISBN 1-4020-0609-8