Mathematical concept
In mathematics , an automorphic L -function is a function L (s ,π,r ) of a complex variable s , associated to an automorphic representation π of a reductive group G over a global field and a finite-dimensional complex representation r of the Langlands dual group L G of G , generalizing the Dirichlet L-series of a Dirichlet character and the Mellin transform of a modular form . They were introduced by Langlands (1967 , 1970 , 1971 ).
Borel (1979) and Arthur & Gelbart (1991) gave surveys of automorphic L-functions.
Automorphic
L
{\displaystyle L}
-functions should have the following properties (which have been proved in some cases but are still conjectural in other cases).
The L-function
L
(
s
,
π
,
r
)
{\displaystyle L(s,\pi ,r)}
should be a product over the places
v
{\displaystyle v}
of
F
{\displaystyle F}
of local
L
{\displaystyle L}
functions.
L
(
s
,
π
,
r
)
=
∏
v
L
(
s
,
π
v
,
r
v
)
{\displaystyle L(s,\pi ,r)=\prod _{v}L(s,\pi _{v},r_{v})}
Here the automorphic representation
π
=
⊗
π
v
{\displaystyle \pi =\otimes \pi _{v}}
is a tensor product of the representations
π
v
{\displaystyle \pi _{v}}
of local groups.
The L-function is expected to have an analytic continuation as a meromorphic function of all complex
s
{\displaystyle s}
, and satisfy a functional equation
L
(
s
,
π
,
r
)
=
ϵ
(
s
,
π
,
r
)
L
(
1
−
s
,
π
,
r
∨
)
{\displaystyle L(s,\pi ,r)=\epsilon (s,\pi ,r)L(1-s,\pi ,r^{\lor })}
where the factor
ϵ
(
s
,
π
,
r
)
{\displaystyle \epsilon (s,\pi ,r)}
is a product of "local constants"
ϵ
(
s
,
π
,
r
)
=
∏
v
ϵ
(
s
,
π
v
,
r
v
,
ψ
v
)
{\displaystyle \epsilon (s,\pi ,r)=\prod _{v}\epsilon (s,\pi _{v},r_{v},\psi _{v})}
almost all of which are 1.
General linear groups [ edit ]
Godement & Jacquet (1972) constructed the automorphic L-functions for general linear groups with r the standard representation (so-called standard L-functions ) and verified analytic continuation and the functional equation, by using a generalization of the method in Tate's thesis . Ubiquitous in the Langlands Program are Rankin-Selberg products of representations of GL(m) and GL(n). The resulting Rankin-Selberg L-functions satisfy a number of analytic properties, their functional equation being first proved via the Langlands–Shahidi method .
In general, the Langlands functoriality conjectures imply that automorphic L-functions of a connected reductive group are equal to products of automorphic L-functions of general linear groups. A proof of Langlands functoriality would also lead towards a thorough understanding of the analytic properties of automorphic L-functions.
Arthur, James; Gelbart, Stephen (1991), "Lectures on automorphic L-functions", in Coates, John; Taylor, M. J. (eds.), L-functions and arithmetic (Durham, 1989) (PDF) , London Math. Soc. Lecture Note Ser., vol. 153, Cambridge University Press , pp. 1– 59, doi :10.1017/CBO9780511526053.003 , ISBN 978-0-521-38619-7 , MR 1110389
Borel, Armand (1979), "Automorphic L-functions", in Borel, Armand ; Casselman, W. (eds.), Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 , vol. XXXIII, Providence, R.I.: American Mathematical Society , pp. 27– 61, doi :10.1090/pspum/033.2/546608 , ISBN 978-0-8218-1437-6 , MR 0546608
Cogdell, James W.; Kim, Henry H.; Murty, Maruti Ram (2004), Lectures on automorphic L-functions , Fields Institute Monographs, vol. 20, Providence, R.I.: American Mathematical Society , ISBN 978-0-8218-3516-6 , MR 2071722
Gelbart, Stephen ; Piatetski-Shapiro, Ilya; Rallis, Stephen (1987), Explicit Constructions of Automorphic L-Functions , Lecture Notes in Mathematics, vol. 1254, Berlin, New York: Springer-Verlag , doi :10.1007/BFb0078125 , ISBN 978-3-540-17848-4 , MR 0892097
Godement, Roger ; Jacquet, Hervé (1972), Zeta Functions of Simple Algebras , Lecture Notes in Mathematics, vol. 260, Berlin, New York: Springer-Verlag , doi :10.1007/BFb0070263 , ISBN 978-3-540-05797-0 , MR 0342495
Jacquet, H.; Piatetski-Shapiro, I. I.; Shalika, J. A. (1983), "Rankin-Selberg Convolutions", Amer. J. Math. , 105 (2): 367– 464, doi :10.2307/2374264 , JSTOR 2374264
Langlands, Robert (1967), Letter to Prof. Weil
Langlands, R. P. (1970), "Problems in the theory of automorphic forms", Lectures in modern analysis and applications, III , Lecture Notes in Math, vol. 170, Berlin, New York: Springer-Verlag , pp. 18– 61, doi :10.1007/BFb0079065 , ISBN 978-3-540-05284-5 , MR 0302614
Langlands, Robert P. (1971) [1967], Euler products , Yale University Press, ISBN 978-0-300-01395-5 , MR 0419366
Shahidi, F. (1981), "On certain "L"-functions", Amer. J. Math. , 103 (2): 297– 355, doi :10.2307/2374219 , JSTOR 2374219
Analytic examples Algebraic examples Theorems Analytic conjectures Algebraic conjectures p -adic L -functions